
5 Mutual Information and Channel Capacity

In Section 2, we have seen the use of a quantity called entropy to measure
the amount of randomness in a random variable. In this section, we in-
troduce several more information-theoretic quantities. These quantities are
important in the study of Shannon’s results.

5.1 Information-Theoretic Quantities

Definition 5.1. Recall that, the entropy of a discrete random variable X
is defined in Definition 2.41 to be

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] . (16)

Similarly, the entropy of a discrete random variable Y is given by

H (Y ) = −
∑
y∈SY

pY (y) log2 pY (y) = −E [log2 pY (Y )] . (17)

In our context, the X and Y are input and output of a discrete memory-
less channel, respectively. In such situation, we have introduced some new
notations in Section 3.1:

Under such notations, (16) and (17) become

H (X) = −
∑
x∈X

p (x) log2 p (x) = −E [log2 p (X)] (18)

and
H (Y ) = −

∑
y∈Y

q (y) log2 q (y) = −E [log2 q (Y )] . (19)

Definition 5.2. The joint entropy for two random variables X and Y is
given by

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log2p (x, y) = −E [log2 p (X, Y )] .
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Example 5.3. Random variables X and Y have the following joint pmf
matrix P: 
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Find H(X), H(Y ) and H(X, Y ).

Definition 5.4. Conditional entropy:

(a) The (conditional) entropy of Y when we know X = x is denoted by
H (Y |X = x) or simply H(Y |x). It can be calculated from

H (Y |x) = −
∑
y∈Y

Q (y |x) log2Q (y |x) = −E [ log2(Q(Y |x))|X = x] .

• Note that the above formula is what we should expect it to be.
When we want to find the entropy of Y , we use (19):

H (Y ) = −
∑
y∈Y

q (y) log2 q (y).

When we have an extra piece of information that X = x, we should
update the probability about Y from the unconditional probability
q(y) to the conditional probability Q(y|x).
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• Note that when we consider Q(y|x) with the value of x fixed and
the value of y varied, we simply get the whole x-row from Q matrix.
So, to find H (Y |x), we simply find the “usual” entropy from the
probability values in the row corresponding to x in the Q matrix.

(b) The (average) conditional entropy of Y when we know X is denoted by
H(Y |X). It can be calculated from

H (Y |X ) =
∑
x∈X

p (x)H (Y |x)

= −
∑
x∈X

p (x)
∑
y∈Y

Q (y |x) log2Q (y |x)

= −
∑
x∈X

∑
y∈Y

p (x, y) log2Q (y |x)

= −E [log2Q (Y |X )]

• Note that Q(y|x) = p(x,y)
p(x) . Therefore,

H (Y |X) = −E [log2Q (Y |X )] = −E
[
log2

p (X, Y )

p (X)

]
= (−E [log2p (X, Y )])− (−E [log2p (X)])

= H (X, Y )−H (X)

Example 5.5. Continue from Example 5.3. Random variables X and Y

have the following joint pmf matrix P:
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Find H(Y |X) and H(X|Y ).
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Definition 5.6. The mutual information14 I(X;Y ) between two random
variables X and Y is defined as

I (X;Y ) = H (X)−H (X |Y ) (20)

= H (Y )−H (Y |X ) (21)

= H (X) +H (Y )−H (X, Y ) (22)

= E
[
log2

p (X, Y )

p (X) q (Y )

]
=
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) q (y)
(23)

= E
[
log2

PX|Y (X |Y )

p (X)

]
= E

[
log2

Q (Y |X )

q (Y )

]
. (24)

• Mutual information quantifies the reduction in the uncertainty of one
random variable due to the knowledge of the other.

• Mutual information is a measure of the amount of information one
random variable contains about another [3, p 13].

• It is natural to think of I(X;Y ) as a measure of how far X and Y are
from being independent.

◦ Technically, it is the (Kullback-Leibler) divergence between the
joint and product-of-marginal distributions.

5.7. Some important properties

(a) H(X, Y ) = H(Y,X) and I(X;Y ) = I(Y ;X).
However, in general, H(X|Y ) 6= H(Y |X).

(b) I and H are always ≥ 0.

(c) There is a one-to-one correspondence between Shannon’s information
measures and set theory. We may use an information diagram, which

14The name mutual information and the notation I(X;Y ) was introduced by [Fano, 1961, Ch 2].
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is a variation of a Venn diagram, to represent relationship between
Shannon’s information measures. This is similar to the use of the Venn
diagram to represent relationship between probability measures. These
diagrams are shown in Figure 7.
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Figure 7: Venn diagram and its use to represent relationship between information measures
and relationship between information measures

• Chain rule for information measures:

H (X, Y ) = H (X) +H (Y |X ) = H (Y ) +H (X |Y ) .

(d) I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

• When this property is applied to the information diagram (or def-
initions (20), (21), and (22) for I(X, Y )), we have

(i) H(X|Y ) ≤ H(X),

(ii) H(Y |X) ≤ H(Y ),

(iii) H(X, Y ) ≤ H(X) +H(Y )

Moreover, each of the inequalities above becomes equality if and
only X |= Y .

(e) We have seen in Section 2.4 that

0
deterministic (degenerated)

≤ H (X) ≤ log2 |X |
uniform

. (25)

Similarly,

0
deterministic (degenerated)

≤ H (Y ) ≤ log2 |Y|
uniform

. (26)

50



For conditional entropy, we have

0
∃g Y=g(X)

≤ H (Y |X ) ≤ H (Y )
X |= Y

(27)

and

0
∃g X=g(Y )

≤ H (X |Y ) ≤ H (X) .
X |= Y

(28)

For mutual information, we have

0
X |= Y

≤ I (X;Y ) ≤ H (X)
∃g X=g(Y )

(29)

and

0
X |= Y

≤ I (X;Y ) ≤ H (Y )
∃g Y=g(X)

. (30)

Combining 25, 26, 29, and 30, we have

0 ≤ I (X;Y ) ≤ min {H (X) , H (Y )} ≤ min {log2 |X | , log2 |Y|} (31)

(f) H (X |X ) = 0 and I(X;X) = H(X).

Example 5.8. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose joint pmf matrix is given by P =
[

1
2

1
4

1
4 0

]
.

Example 5.9. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose p =
[

1
4 ,

3
4

]
and Q =

[
1
4

3
4

3
4

1
4

]
.
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